
1

In terms of the growing demands required for control system design,
engineers are developing systems with complex subsystems that all
have to interact with each other. If you look at an electric vehicle, or

any vehicle, it’s a highly complex system with many different domains
— mechanical connected to electrical, connected to chemical in the
batteries. All these different subsystems have to interact with each other
in an appropriate way.

There are increasing demands in terms of customer features —
performance, obviously, and how that has to be reconciled against
pressures on the automotive industry concerning the environment. In the
automotive industry, a lot of software is being put into a product that will
be driven at high speed, so safety is of paramount importance.

There is also a proliferation of different design tools that feed into
the control design process. Each engineer has to decide which tools are
the most important for each part of the process. They then must come
up with a way to implement the best in class when developing tools for
testing and controllers, and be able to do this by reusing work and not
reworking each model every time a new project comes in.

These are the high-level challenges many users are facing, and to
help address that, there has been a growth in the use of model-based
development tools targeting hardware-in-the-loop (HIL) testing.
The notion of being able to develop a virtual prototype of the whole
system is playing an increasing role in engineering system design and
development. It’s been proven, time and again, that it helps reduce

Introduction
Since its inception, the
Functional Markup Interface
(FMI) standard has proven
to be invaluable in many
projects that design
engineers are involved
in. It is becoming the
primary method for model
transfer and co-simulation,
providing a smooth, error-
free technique for design
engineers to deliver their
work without manual
integration or resorting to
other proprietary tools. At
the same time, advanced
symbolic technologies
have emerged that
provide extremely fast
auto-generated code for
the implementation of
dynamic system models and
enable advanced analysis
applications.

One application in which
the FMI standard has been
used is the new dSPACE
SCALEXIO platform for
hardware-in-the-loop
(HIL) testing. Engineers
can generate a functional
markup unit (FMU) of an
automatic transmission
from Maplesoft’s MapleSim
software and implement
it in SCALEXIO to perform
a full-vehicle, real-time
simulation.

Symbolic Techniques for Model Code Optimization:
FMI Applications
This briefing is a summary of the webcast of the same name on October 14, 2014.

Maplesoft tools provide multi-domain, system-level models through an easy-to-use
schematic interface through MapleSim.

Symbolic Techniques for Model Code Optimization: FMI Applications	 October 14, 2014 • Executive Summary

2

prototyping cycles and cost, and helps engineers
integrate end user demands while reconciling
safety and environmental demands.

Engineers can develop a deterministic and
repeatable test platform so they can develop test
plans that don’t require driving a vehicle around
a test track. They can do much of the work in the
lab.

Great demand also means that there is
great demand for model fidelity — the ability
to add further detail into those models. This is
one of the areas that has driven developments
in software tools — the dilemma between
being able to achieve real-time performance
and sacrificing a certain amount of fidelity to get
that performance. Very often, in terms of complex
systems, this can reduce the usefulness of the model.
The engineer ends up with something so simple that
it isn’t a true reflection of what the control system will
actually face.

Perfecting Symbolic Technologies
Maplesoft tools provide multi-domain, system-

level models through an easy-to-use schematic
interface through MapleSim. This is tied very tightly
with Maple in order to be able to take those models
and do parametric studies and other optimizations to
develop tools that can solve many of the issues that
become apparent when developing a system-level
model.

Maplesoft has been developing symbolic
technologies for the past 30 years. This symbolic
capability takes the system diagram and generates
equations from it. Each component within the
MapleSim environment has the internal equations
that define the dynamic behavior of that component.
Within the MapleSim solver, those equations can be
extracted, and because of the way they are connected
together through the topology of the model, they
can be combined together to develop full system
equations of motion.

These models are represented in equation form
and are fully parametric. The next step is to apply
many different techniques for simplifying those
equations. This is what an engineer would likely
be doing with a blank piece of paper, and then
spending many hours or even days trying to derive
system equations by hand. MapleSim does this
automatically.

Maplesoft has developed very advanced solvers
for differential algebraic equations (DAEs). The
representation of these models produces differential
equations that have many algebraic constraints
incorporated in them. These DAEs, depending on
their complexity, can have very high indices. A set of
solvers combines numerical and symbolic techniques
to reduce the complexity of the system in order to
turn them into differential equations.

At some point, an engineer needs to define
the inputs and outputs for the system. Everything
up to this point has been treated as an acausal
representation. Following decisions on inputs and
outputs, the equations are resolved accordingly to
provide a final set of equations of motion.

It doesn’t stop there. An internal co-generation
capability has many different symbolically based
optimization techniques that can be used for tasks
such as characterization of common sub-expressions

Maplesoft offers the Connector for FMI that allows users to take a model
and open up Maple using a template provided to develop the FMU, or
Functional Mockup Unit.

Symbolic Techniques for Model Code Optimization: FMI Applications	 October 14, 2014 • Executive Summary

3

so they can be pre-computed using trigonometric
identities. Many different rules of mathematics
can be used to factor out, as much as possible, any
computational sequences that don’t contribute to the
final model.

That is then dropped into a simulation tool like
dSPACE system. Fundamentally what this means is
that some pretty bold claims can be made about the
code generated — it’s going to be the fastest possible
by virtue of the highly rigorous symbolic steps taken
to get there.

Users are able to create models with great detail
in them and generate code from the models that are
fully optimized and portable across many different
platforms to achieve real-time performance where
many other tools fail.

The FMI Standard
The Functional Markup Interface (FMI) standard

was developed as part of the European-funded
MODELISAR project from the Modelica Association.
The primary goal was to develop plant models using
Modelica and integrate them into the AUTOSAR
controls and system protocol. Since then, FMI has
taken on a life of its own. It’s been developed,
initiated, and headed by Daimler in Germany, and
now has been adopted by many different automotive
manufacturers and other engineering groups. FMI
allows you to prove your software and model HIL
simulation from different vendors. It is an open
standard developed by a consortium of industrial
and academic research partners.

In terms of Maplesoft’s support of FMI, the
company offers the Connector for FMI that allows
users to take a model and open up Maple using a
template provided to develop the FMU, or Functional
Mockup Unit. Simply by clicking a few buttons and
selecting a few options, the software generates
the code and enables the user to deploy the FMU
into whatever tools are needed for using that work
throughout the remainder of the tool chain.

dSPACE: FMI and Simulation
dSPACE is a global provider of embedded solutions

for real time. The company’s tools develop, prototype,
test, and manage mechatronics control systems
and range system modeling and analysis, through
functional testing, rapid control prototyping, ECU
production, virtual ECU testing, and ECU testing
with HIL. Additional tools provide data management
throughout that process.

These tools focus on FMI and simulation, and
what’s involved in simulation, including the back-
to-back testing process or validation process where
one moves from model-in-the-loop, to software-
in-the-loop, to hardware-in-the-loop. dSPACE tools
that can help do that include VEOS, a virtual ECU
simulation tool. The architecture in the HIL arena is
called SCALEXIO, which is a best-in-class HIL system
that features software-configurable I/O, built-in
capabilities that truly support real-world hardware
interfaces, and advanced multi-processor, multicore
simulation capabilities for real time.

The key to using these tools throughout the
process is the ability to exchange models and provide

dSPACE offers hardware-in-the-loop architecture through
SCALEXIO, which features software-configurable IO and built-in
capabilities to support real-world hardware interfaces.

Symbolic Techniques for Model Code Optimization: FMI Applications	 October 14, 2014 • Executive Summary

4

seamless access to these platforms. In order to do
this, there must be a consistent and open interface
like the FMI. It’s one way to provide a seamless
interface to connect simulation tools together to
provide the cohesiveness required to do validation.

Whether using a specific modeling environment
or FMI, users must take into account the real-time
capabilities of these systems. This can definitely
be enhanced with multicore and multi-processing
capabilities, but there is always the paradigm that
users have to look at in terms of model complexity,
solver type, and co-simulation approaches versus
tightly coupled modeling environments.

It’s also important to take into account platform
independence, and whether or not source code needs
to be shared as part of a tool or an exchange. There’s
also the concept of intellectual property protection.
FMI provides a capability based on compiled libraries
and pre-selection of target platforms to share models
between suppliers and OEMs that can provide an
advanced approach to handle the types of systems
being developed today.

Tools for FMI
In the simulation arena, physics-based tools offer

an opportunity for a greater plant-model capability

and simulation capability. Maplesoft is one of the
leaders in this area. The FMI standard is in its 2.0
release, and includes HIL and virtual validation.
Users can have tunable parameters in the system
so they can change parameters during runtime
and transport sample times across models,
providing greater capability for co-simulation and
for simulating systems across either multiple cores
or multiple processors.

Areas of FMI 2.0 support provided by dSPACE
include FMI for Model Exchange in which
models are exchanged and use a common solver
technology. Tightly coupled subsystems are
connected at the equation level, and are used with
a single solver technique.
FMI for Co-Simulation is used when an FMU is

exchanging a model in its own system with a solver
included. This is a more loosely coupled technique
for sharing models, but it’s more flexible in terms of
its ability to support diverse modeling environments
and different types of simulation systems like dSPACE
real-time systems. Once a system is running, FMI
for Applications addresses how to use that model
and how to interface to it. FMI for Product Lifecycle
Management is used for sharing models and
managing the model environment.

When building FMUs for HIL simulation, dSPACE
has a tool called ConfigurationDesk, which provides
the ability to design the total signal chain of the
interface of a system used for HIL testing. Users
can define everything from I/O functions, to
conglomerations of I/O functions, to the model
interfaces that are part of the system. Model
subsystems can be combined whether they connect
to I/O or not. ConfigurationDesk also address whether
the models run on a single core, across multiple cores,
or even across multiple processors.

Once the connections of I/O and models in a
system are mapped, the next step is to configure the
tasks of a system. Different FMUs can be placed within
different tasks that run at a timed or periodic rate, or

ControlDesk from dSPACE lets users define controls, knobs, dials, and
gauges to connect to parameters within the model.

Symbolic Techniques for Model Code Optimization: FMI Applications	 October 14, 2014 • Executive Summary

5

they can be dependent on tasks that are part of the
system. The real-time constraints in the architecture
of the system are defined as it executes in real time.
When the HIL system is running, users can access it via
a GUI or a manual user interface.

ControlDesk lets users define controls, knobs, dials,
and gauges to connect to parameters within the
model. MotionDesk allows a user to animate a system,
and AutomationDesk enables automated testing of a
system.

FMI is an increasingly important standard for
engineering system design, testing, and integration.
Symbolic technology is proven physical modeling
technology that significantly improves model fidelity
without sacrificing performance. Maplesoft and
dSPACE have proven rapid plant model development
for HIL testing using FMI and the SCALEXIO platform.

Authors/Presenters
Paul Goossens is a mechanical engineer

with more than 20 years of experience in both
engineering and software business management.
Previous positions included senior management for
companies in engineering modeling solutions and

high-performance real-time
simulations. He has built a
strong reputation as an expert
in real-time applications,
particularly in high-fidelity
simulation of mechatronic
systems for HIL applications,
spending a good part of his

career promoting model-based methodologies within
the automotive industry.

Jace Allen is an electrical
engineer in systems engineering
at dSPACE Inc., having designed
and managed hundreds of
hardware-in-the-loop (HIL)
system implementations for
various customers. In the
past 25 years, he has handled

many diverse modeling, controls, and simulation
test applications in the automotive, commercial
vehicle, and aerospace areas. His background includes
model and core product development for vehicle
controls/testing, safety/security systems, and data
management systems.

View the original webcast at https://event.webcasts.com/starthere.jsp?ei=1041930

